
Steam Heat Controller Retrofit

Final Report

Team - sddec18-02

Jevay Aggarwal - Technical Lead

Sarah Coffey - Weekly Report Lead

Thomas Devens - Project Plan Lead

Joseph Filbert - Client Contact Lead

Ken Wendt - Website Master

Liz Wickham Kolstad - Design Document Lead

Lee Harker - Client and Advisor

http://sddec18-02.sd.ece.iastate.edu/ - Website

sddec18-02@iastate.edu - Contact

Revised: December 3, 2018

2

Table of Contents
1. Introductory material ... 5

1.1 Acknowledgement .. 5

1.2 Definitions and terminology ... 5

1.3 Problem statement ... 5

1.4 Operating environment .. 5

1.5 Intended users and uses ... 5

1.6 Assumptions and limitations .. 6

1.7 Expected end product and other deliverables .. 6

2. Project Design .. 7

2.1 Requirements .. 7

2.2 Considerations .. 7

2.3 Overall Design ... 8

2.4 MCU Design .. 8

2.4.1 Motor and mount .. 8

2.4.2 Hardware ... 9

2.4.3 Software .. 9

2.5 RCU Design ... 10

2.5.1 Hardware ... 10

2.5.2 Software .. 11

2.6 WCU Design ... 11

2.6.1 Hosting .. 11

2.6.2 Database ... 11

2.6.3 Functionality ... 11

2.6.4 Errors ... 11

3. Implementation Details .. 12

3.1 MCU ... 12

3.1.1 Motor and mount .. 12

3.1.2 Hardware ... 13

3.1.3 Software .. 15

3.2 Remote Control Unit (RCU) ... 15

3.2.1 Hardware ... 15

3.2.2 Software .. 16

3.3 Web Control Unit (WCU) .. 16

3.3.1 Hosting .. 16

3.3.2 Database ... 17

3.3.3 Functionality ... 17

3.3.4 Errors ... 19

3

4. Testing Process and Results ... 20

4.1 Functional Testing and Results ... 20

4.1.1 MCU .. 20

4.1.2 RCU ... 21

4.1.3 Temperature Sensor Testing ... 21

4.2 Non-functional Testing and Results .. 22

4.2.1 Battery ... 22

4.2.2 Error notifications .. 23

5. Related Products ... 23

6. Final status .. 23

6.1 MCU ... 23

6.2 RCU .. 24

6.3 WCU .. 24

6.4 Integration Testing ... 24

6. Appendix I - Operations Manual ... 25

6.1 Setup ... 25

6.1.1 MCU .. 25

6.1.2 RCU ... 26

6.1.3 WCU .. 27

6.2 Operation .. 27

6.2.1 MCU .. 27

6.2.2 RCU ... 27

6.2.3 WCU .. 27

7. Appendix II - Alternative and Past Iterations of Design ... 28

7.1 Prior group ... 28

7.2 RCU .. 28

7.3 Motor Mount ... 29

8. Appendix III - Lessons Learned .. 30

8.1 Security .. 30

8.2 Temperature Sensor Placement .. 31

4

Table of Figures

Figure 1. ... 8

Figure 2. ... 9

Figure 3. ... 10

Figure 4. ... 12

Figure 5. ... 13

Figure 6. ... 14

Figure 7. ... 14

Figure 9. ... 15

Figure 10. .. 16

Figure 11. .. 18

Figure 12. .. 18

Figure 13. .. 19

Figure 14. .. 19

Figure 15. .. 20

Figure 16. .. 21

Figure 17. .. 22

Figure 18. .. 25

Figure 19. .. 26

Figure 20. .. 29

Figure 21. .. 30

5

1. Introductory material

1.1 Acknowledgement
Our client and faculty advisor, Leland Harker, will be our point of contact for any equipment we need

as well as any fabrication of specific parts. Additionally, he will provide technical advice on various

parts of the project, and guidance on the project.

1.2 Definitions and terminology
Term Definition

MCU Motor Control Unit

RCU Remote Control Unit

WCU Web Control Unit

Block Set of rooms whose temperature is controlled by a single valve

1.3 Problem statement
As with many buildings on Iowa State University's campus, Coover Hall relies on steam to heat the

building. Unfortunately, the room temperature is controlled by valves that are commonly hidden

behind furniture or equipment making it difficult to adjust the temperature. Additionally, there is no

reliable way to control the room temperature consistently as the room is subjected to outside

weather and other factors and the valve cannot compensate for these variances. In other words, the

only way to adjust the temperature is to open or close the valve manually and wait to see if the

temperature changes desirably. There are also no mechanisms in place to control the valves remotely

or en masse.

1.4 Operating environment
Our product will be located in the older parts of Coover Hall. The steam valves are in faculty offices,

graduate student labs, and public meeting rooms. The product will be operating in rooms that are

expected to stay within normal indoor temperature ranges (64-80 ℉). The retrofit may or may not

be visible or physically accessible, based on the valve location in the room. The remote controller will

be in the same room as the retrofit. Some of the valves are located in rooms that will have dust and

debris in the air, so the electrical equipment needs to be packaged properly.

1.5 Intended users and uses
The users will primarily be the faculty and staff with offices and labs that are heated with steam

valves. Since a single steam valve controls the heat for several rooms, the thermostat will be placed

in an easily accessible location so whoever is using the room or lab will be able to change the

temperature. This is our base requirement that needs to be met. Ideally, we would like to create a

network interface that ETG could use to monitor and manipulate each individual thermostat in

Coover. This could be used to automatically decrease the temperature during breaks where fewer

people will be using the building. This would save money and be a more efficient use of steam heating.

6

The design plan is to rely on the temperature sensor located on the MCU for collection of data. This

being the actual temperature in the room and the desired temperature given by the user. Based on

the difference between the current temperature and the desired temperature, the MCU will

determine which way and how much to change the position of the valve. It will also monitor and

detect any issues with the valve or database, sending error messages to be displayed on the

thermostat, as well as sending an email to any staff that have remote access.

1.6 Assumptions and limitations
Assumptions

▪ The product will only be used in Coover Hall.

▪ It will be installed in one room with the capability to replicated in an unlimited amount of

rooms.

▪ The temperature in Coover will be within 60 ℉ to 80 ℉.

▪ There is a wall outlet near the steam valve to power the motor control unit.

Limitations

▪ Our product has a $500 budget for building and testing our whole project.

▪ The thermostat must be battery operated and be able to last for at least one semester.

▪ The valve controller must be fitted to the valve with little to no change to existing setup.

▪ The remote access must be secure i.e. only accessible to the staff of Coover Hall.

1.7 Expected end product and other deliverables
The remote control unit will handle the local input of temperature adjustments and display any error

messages. It will get the information and error data from the MCU and submit temperature changes

to the motor control unit.

The motor control unit will take the variables of current temperature and desired temperature. It

will then perform a computation to determine the direction and rotation amount that the motor

needs to turn the valve. The motor controller will maintain the desired temperature until a different

temperature is input. The programming on the device will also check for errors with the motor,

mitigate any issues found, and report them when human intervention is needed.

The web control unit will allow users to change the temperature via a web page. It will also provide

the interface to resolve reported errors and set mass control of the valves. Error reports will also be

generated through this unit.

7

2. Project Design

2.1 Requirements
Functional

▪ Retrofit will be motor-driven.

▪ Retrofit will be controlled wirelessly.

▪ There will be one retrofit, remote controller, and temperature sensor per valve.

▪ Motor and communication errors will be recorded and handled automatically.

▪ Ability to control all connected valves en masse.

Non-functional

▪ Temperature will be held within ± 1 ℉.

▪ Remote controller must be powered by a battery with a lifespan of 1 semester.

▪ Errors will be reported timely (within 30 minutes).

2.2 Considerations
The users of the system are expected to interact with our product like they would with a normal

thermostat. This means that no previous knowledge of or interaction with thermostats is necessary.

Changing the temperature in the room should be as straightforward as pressing a button. Our design

needs to reflect that simplicity and ease of use for the potential user.

There are a variety of steam valves in Coover Hall that would need to support this retrofit. Each valve

is located in a different position in the room, with some being in the middle of a wall and others being

located around other pipes and obstacles. It would be ideal to design the retrofit such that it could be

fit on any of the valves in Coover Hall. Thus, we need to consider all possible installation

environments.

The steam valves being retrofit will control the amount of heat in the room they are located in, as

well as several adjacent rooms. As a result of having multiple rooms with temperatures controlled by

one steam valve, each room may have a different temperature, and each valve will have several users.

The design needs to consider how to handle multiple conflicting set temperature requests. Our client

has determined that coordination of multiple room temperatures to control a specific valve is out of

scope for this project.

The battery life on the remote control unit is also a considerable factor in the design. Since it needs

to last for an entire semester, we need to find an energy efficient solution. The bottom line for

reducing energy consumption was to find a design that limits the amount of processing on this device.

Security within our system is also a factor in the design. The components will be connected within

the Iowa State University network. As such, we should take the proper precautions in our designs to

not expose information. We also need to ensure that the connections and components are not

vulnerable to malicious users.

8

The devices we create and the processes we use to develop them need to be as safe as possible. Some

activities where we need to practice standard safety precautions are in soldering, measuring voltage

and current, operating shop equipment, and handling power sources. For the end design, our product

should reduce the possibility of safety malfunctions by packaging our devices, properly insulating

exposed connections, and ensuring all power and ground connections are secure.

2.3 Overall Design

Figure 1. Block diagram for the system

2.4 MCU Design
2.4.1 Motor and mount

The retrofit for the valve needs to be capable of controlling the steam valve reliably. In order to

accomplish this, we needed to use a motor with appropriate power and size. To determine the

amount of torque needed by a motor, we used torque wrenches to measure how much would be

needed on the valve; the result was approximately 8in-lb of torque to turn from a full stop and 1 in-

lb of torque to move when not fully closed. We also wanted to find a motor that had a built-in encoder,

so that we could monitor the motor’s rotation in software, as well as minimize the amount of parts

needed to put together. With a chosen motor, we could then design the mount around the valve and

this motor. The optimal solution for the mount was to find a design that could be fit on any of the

valves in Coover Hall. Some of the steam valves are located in corners with a grouping of other pipes,

while others are located in the middle of open walls. We decided to design the mount to meet the

physical space allowed by the worst positioned valve.

9

Figure 2. Valve location example

2.4.2 Hardware

We also needed to find a microcontroller that was capable of driving the motor in software. The

microcontroller would need the appropriate amount and type of pins, the ability to connect to the

network and to the RCU, and have sufficient memory and processing capability to run the software.

Through several iterations of design, it was determined that the microcontroller would communicate

with the RCU through TCP sockets over WiFi. The microcontroller would also need the ability to

query the SQL database that was used to store the current temperature information and error codes.

The temperature sensor was moved onto the MCU due to constraints on the RCU, so the

microcontroller would also need to have the capability to interface with the chosen temperature

sensor. Since these programs have the potential to be run at the same time, the microcontroller would

need to support concurrent processes (ie, multithreading).

2.4.3 Software

Since the temperature for a single valve can be controlled by several users and may result in multiple,

conflicting desired set temperatures, we decided that the MCU would only use the most recent

temperature requested. Controlling the motor in software requires the ability check the current and

set temperature and determine the amount of rotation necessary. Since the temperature will be

fluctuating within the rooms, it was determined that a simple proportional system would be

sufficient for this project.Thus, this software only needs to change the valve position relative to the

difference between the set and current temperatures.

10

Figure 3. Motor controller logic

The software to communicate with the RCU was decided to act as the server in the TCP Client-Server

scheme, since the microcontroller on the RCU would always be powered on. The program would need

to be able to wait for incoming connection requests from the client, get the current and set

temperature to send to the RCU, send it, and wait for a new set temperature response from the client.

With the decision to use a database as a central repository for this data, the program would also need

to push the new temperature information to the database. Finally, there needed to be a program that

routinely measured the current temperature and pushed it to the database for the WCU. Based on

earlier design decisions, this program could be set to run periodically, rather than constantly in the

background.

2.5 RCU Design
2.5.1 Hardware

The remote control unit is used to control the temperature within the room. The microcontroller

used in the device needs to be capable of using a wireless connection to send and receive data. The

microcontroller also needs to be battery powered and charged once per semester. After considering

several options to achieve these goals, the best choice ended up being a power switch in the circuit.

Since this requires human intervention, and we needed to be able to measure the temperature in the

room more periodically, we decided to move the temperature sensor to the MCU. To show the

11

relevant data on the RCU, we needed a display that could show the 4 digits for the temperature, and

could be easily connected to the microcontroller. The unit also needs a method for the user to input

the desired set temperature.

2.5.2 Software

The MCU provides data to the RCU via TCP sockets, where the RCU acts as the client in the scheme.

In order to propagate the set temperature information to the WCU, the MCU writes the requested set

temperature to the database. When an error is reported on the steam valve, the RCU will get an error

code from MCU on start-up. It will display this error code instead of the temperature information and

prevent the user from entering new temperature requests.

2.6 WCU Design
2.6.1 Hosting

The web control unit is designed to satisfy our clients requests for remote and mass control of the

system. We determined that the most accessible medium to handle this would be a website. Using a

website, users with an internet connection and the correct permissions are able to view and control

temperatures. However, we didn’t want absolutely anyone to have access to the site, so we decided

to have it hosted on an ISU domain, and which restricts access to ISU network connections only.

2.6.2 Database

Creating a database lets us store vital data about the system in a central repository, accessible to the

WCU and MCU. Each MCU reads and writes to the database; the WCU is able to access this data

without having to directly connect to the MCU. Instead of referring to the MCU by its room number,

we use a block reference number. This is to deal with the issue that multiple rooms are controlled by

a steam valve in a different room. Users in a room without a steam valve might have trouble

identifying which MCU to adjust, if it were identified only by room number. The database maintains

a table with the room numbers corresponding to the block, which is also displayed on the website.

2.6.3 Functionality

Users need to be able to view and update the temperature for a single valve, control all valves at once,

and have the ability to handle errors. The website essentially acts as a front-end interface to the

database. This keeps the overall design as modular as possible. Users are able to find the correct MCU

to update, change the set temperature, and view the current temperature. They are also able to

perform mass control of all of the valves, and resolve errors. All updates to the site are pushed to the

database, so that when the MCU goes to adjust the temperature, it can see any recent changes made

by the WCU.

2.6.4 Errors

The website also displays the current errors reported from the valves and provides a page to mark

the errors as resolved. The client needs to be notified of errors via a standard and a reliable service.

Errors also need to be reported as soon as possible. All errors are logged in the database, so the error

notification script has to have access to it. It also needs access to an emailing utility that can be

automated. Because a possible error is network connectivity issues from the MCU, we need to host

12

the error reporting program on the web server. This mitigates a scenario where errors aren’t

reported, because the MCU can’t connect to the internet. Our program will need to run periodically

on the web server to check for errors logged in the database and sends a message with the error

information.

3. Implementation Details

3.1 MCU
3.1.1 Motor and mount

We choose to use the IG42 24VDC 078 RPM Gear Motor with Encoder as it provided 18 kgf-cm

(~15in-lb) of torque which is significantly more than the valve required. This motor was repurposed

from the previous project’s supplies, so it did not count against our budget. Additionally, the built-in

encoder allows the software to monitor the motor’s rotation. The motor mount was designed using

OnShape, a free, collaborative, online CAD software. The motor mount is machined from a single piece

of angle aluminum using a CNC mill. To assist with alignment and account for variations between

valves, we chose to put slotted holes in the angle aluminum so that the motor could be slid laterally

during installation. The mount is attached to the valve using a commercially available pipe bracket

which is rated for steam piping. The green plastic insert comes in various pipe diameters; which

allows the mount to be used on different sized valves simply by changing the plastic insert. The motor

is coupled to the valve stem with an aluminum coupler which uses set screws to create a temporary

hold on the motor output shaft and the valve stem.

Figure 4. Motor mount

13

Figure 5. Final motor mount design

3.1.2 Hardware

The Raspberry Pi 3 B+ was the best option for the microcontroller on the MCU. It had the correct

amount and type of pins for the functionality we needed. The chosen temperature sensor is the

MCP9808 High Accuracy I2C Temperature Sensor Breakout Board from Adafruit; the Pi supports the

I2C connection. The Raspberry Pi alone could not control the motor, so we used an Adafruit DRV8871

Breakout board which could interpret a PWM signal from the Raspberry Pi. The encoder from the

motor is also connected to I/O pins on the Pi, so that they can be accessed in software. We created

our own custom hat for the components that needed to connect to the Pi. This hat is equipped with

both a MPC9808 temperature sensor and DRV8871 DC motor driver. During our initial testing, we

used Adafruit’s breakout boards for for both of these chips. For our final hat, we used the open source

schematics Adafruit provided for these breakout boards and recreated both designs on our hat with

additional logic for I/O pin connections to the Pi. This provided a much cleaner product then having

both breakout boards sitting on top of another PCB on top of the Raspberry Pi.

14

Figure 6. MCU PCB

The MCU has two unique power supplies connected to the custom hat: A 24V DC power supply and a

5V DC power supply. The 24V power supply is used to power the motor. The 5V power supply is

used to power the Raspberry Pi. The Raspberry Pi has additional I/O pins that are used to power the

MCP9808 and DRV8871.

Figure 7. Assembled MCU and packaging

15

The Raspberry Pi also provides plenty of processing power to handle running the software, as it

supports multithreading and has on-board wireless LAN. The Pi able to connect to Iowa State

University’s network, which enables the connection to the RCU via TCP sockets and the SQL database.

3.1.3 Software

All software on the MCU was written in Python. This language provides the most flexibility and ease

of use for connecting to the components and network. The speed of execution is also sufficient for

this project. The code that runs periodically is kicked off by Cron, which is configured to execute the

adjust_valve.py and update_database.py at 15 minute intervals. Cron is a package used by the

operating system to schedule custom jobs. The other script, wifi_comm.py, is added to pm2, which

handles the operation as a background process by the operating system and runs the script at startup.

3.2 Remote Control Unit (RCU)
3.2.1 Hardware

The microcontroller chosen for the RCU is the Adafruit Feather Huzzah, which includes an onboard

ESP8266 WiFi chip. The battery we chose to use is an Anker PowerCore 5000mAh External Battery,

because it has sufficient charge capacity, charge indicator lights, is easy to connect to the

microcontroller via the microUSB port, and can be recharged through a USB port. The Feather

supports the I2C standard, enabling us to use a variety of screen types with ease. Since the battery

consumption was no longer as major of a concern, we decided to use a quad-alphanumeric LED

character display that had built in I2C. This allowed us to use fewer pins than an LCD display, which

was necessary because the microcontroller only has 9 GPIO pins. The temperature can be controlled

using buttons that are momentary switches. They are easy to interact with, use little power, and are

inexpensive. The WiFi chip also lets connect to the MCU via TCP sockets.

The PCB for the RCU was designed to be a hat for the Adafruit Feather Huzzah using the design files

Adafruit published online for measurements to make sure the hat would fit. The hat utilized male

I/O pins on the bottom of the PCB to fit the female headers on the Adafruit Feather Huzzah. It also

routed the appropriate traces to a five pin header to attach the LED display. Lastly, it had a place for

the two buttons that would change the desired temperature up or down.

Figure 9. RCU PCB

16

3.2.2 Software

The RCU is flashed with a single program. It starts off by connecting to the internet, and then

connecting to the MCU via the TCP socket. Once the MCU accepts the connection from the RCU, it

sends the display data to the RCU. This data will either be the current and set temperatures, or an

error code. This data will be printed to the LED display. The buttons are configured as inputs and use

switch debouncing to ensure the temperature is changed only once with each button press. The user

has 30 seconds to press the buttons and make changes to the temperature before the socket

connection expires. The software limits the options the user can select to between 60 and 80 degrees.

Before it expires, the RCU sends an update to the MCU. If the user did not change the temperature,

“time” is sent back to the MCU, to represent a timeout (no change). Otherwise, the new temperature

is sent to the MCU. On timeout, the display prints “SENT,” to indicate that the change has been

submitted. The user is then supposed to turn the power switch to off. If the user does not flip the

switch, this message displays for around 30 seconds before the RCU automatically resets the

connection. If the RCU received an error code from the MCU, it will display “ErrN” where N is the

error code. The buttons will also be disabled if an error was received, so that the user cannot enter a

new temperature.

Figure 10. Communication sequence diagram

3.3 Web Control Unit (WCU)
3.3.1 Hosting

The remote control of the MCU has been implemented as a website. This site is hosted on the internal

ece.iastate.edu network and domain, which is hosted and maintained by ETG. The website was

designed using the Java Spring Framework, which uses an Apache Tomcat server, and Thymeleaf

template rendering for HTML web pages. The database was also created and is hosted by ETG.

17

3.3.2 Database

The database was created in MySQL, because it is robust, scalable, and easy to connect to in Java (from

WCU) and Python (MCU). The tables were created through the MySQL Workbench. We use SSL

certificates when making connections to the database, which encrypts the connection and data,

giving our project an extra level of security.

The database consists of two tables, a Room table to track which rooms are connected by a single

valve, and a Block table that contains the reports for every Block in the system. The Room table

contains a list of Room_ID and Block_ID pairs. The Room_ID is the number that the room is referred

to as in the Coover Hall floor plan. The Block_ID is a number from 1 to the number of Blocks in the

system used to identify a group of rooms controlled by the same valve.

As stated above, the Block table contains all reports for each Block with the following format:

▪ Report_Num - An auto-incremented integer that is unique to each report

▪ Timestamp - Time/Date for each report “Year-Month-Day Hour:Minute:Second”

▪ Block_ID - Number of the Block represented by the report

▪ User_ID - String of the user that sent the report

▪ Current_Temp - Current temperature in the room that contains the valve

▪ Set_Temp - Desired temperature for the room that contains the valve

▪ Error_Code - Number from 0 to 9 reflecting the current error state of the valve

3.3.3 Functionality

The main page contains the floor plans for Coover, with a link on each room that directs the user to

the relevant Block page. Within each Block page, the user can view the time of the last reported state

of the valve, as well as the current and set temperature for the room containing the valve. They can

also adjust the temperature by moving a slider to the desired temperature, which sends an new

report to the database. The slider limits the temperature options to between 60 and 80 degrees.

Additionally, if the block is currently experiencing an error, temperature controls will be disabled.

18

Figure 11. Block report

Mass control of all valves works in the same manner as an individual Block with the exception that

an update is sent to the database for every Block on the list. If any block is currently experiencing an

error, temperature control will be disabled for that specific block.

Figure 12. Mass control

The error resolution page displays any Block with an existing error, along with the code and

description for that particular error. The user is able to mark each error as resolved when the error

is fixed, which will update the database with a revised report.

19

Figure 13. Error Resolution

3.3.4 Errors

The error notification script on the web server is configured to run periodically

In the event that the MCU fails to connect to the internet and its responsible for sending an error,

then the client will never receive notification that the MCU is down. Moving the error reporting to the

web server mitigates this issues. In order to find and report the errors, they will need to be logged

from a source that the web server can access. Email has been chosen as the method of alerting our

client about errors, because it is standard, timely, and easy to automate.

Figure 14. Error notification email example

20

4. Testing Process and Results

4.1 Functional Testing and Results
4.1.1 MCU

Since we decided to reuse the motor and encoder from the previous group’s attempt, we needed to

verify the motor still worked. We also needed to ensure the motor controller circuit we designed

would work with the components. We hooked up the motor to one of the power supplies in the labs

and gave it varying voltages and evaluated the response. We also monitored the output of the encoder

with the oscilloscope to verify it was working as expected. Once the motor’s operation was confirmed,

we attached the Raspberry Pi and attempted to control the motor from it. The code on the Pi sent a

PWM signal to the motor controller which determined the speed of the motor.

Figure 15. Testing the motor and encoder with the Raspberry Pi

We also tested to make sure the Pi could read the data from the encoder. The encoder provides a

square wave to one of the I/O pins of the Pi. A full rotation of the motor shaft corresponds to 420 high

sides of the square wave. This test confirmed that we could monitor the angle of rotation of the motor

in software.

21

4.1.2 RCU

The code on the RCU was tested to ensure it could connect to the MCU on-demand, errors were

reported when present, and data was interpreted and handled correctly. We measured the

connection to the MCU by starting the server code as a background process on the MCU, and then

repeatedly making connections to the RCU. We let the connection between the two end: gracefully

(wait for “SENT” and power off), ungracefully (don’t wait for “SENT” and power off), and

timeout/reset (wait for “SENT”, software attempts a reconnect, and then power off). We then

attempted a reconnect. In all cases, we saw the RCU able to reconnect to the MCU and transmit data

successfully.

4.1.3 Temperature Sensor Testing

We decided to use the Adafruit MCP9808 Precision I2C temperature sensor. We wanted to verify that

this sensor would work accurately with our Raspberry Pi. We connected the sensor to the Pi and used

a Python script that printed the current temperature to standard output. We then compared that

value to dedicated thermometers and ensured that the value was within 2 degrees of the actual

temperature.

Figure 16. Test setup to measure temperature sensor accuracy

This testing was repeated when the MCU hat was attached to the Raspberry Pi. In this configuration,

the temperature sensor was placed approximately 2 cm from the Pi CPU. We recorded the

temperature in the room as well as the temperature reported by the sensor over the course of 3

hours; the Pi performed its normal operations during this time period.

22

Accepted Temp

(Fahrenheit)

Recorded Temp

(Fahrenheit)

Difference

(Fahrenheit)

71 87.8 16.8

69 85.6 16.6

71 91 20

73 94.5 21.5

74 96.3 22.3

69 86.5 17.5

70 89.3 19.3

72 90.3 18.3

75 93.3 18.3

73 89.825 16.825

72 88.36 16.36

71 88.1 17.1

75 93.2 18.2

72 87 15

68 83.075 15.075

70 85.5 15.5

 Results

 Average 17.79125

 Max. Deviation 4.50875

Figure 17. Temperature sensor testing results from final placement

The results are unsatisfactory. The difference in the actual temperature and the recorded is almost

proportional, but the amount of deviation seen in this small snippet is enough to be quite unreliable

for our system. We would not be able to use this current temperature data in our control of the

system.

4.2 Non-functional Testing and Results
4.2.1 Battery

In order to verify that the battery lasts all semester, we wanted to test how many power cycles the

battery would support. We assumed the normal operation of thermostat would be approximately 1

change per day that class is in session for an entire semester. That comes to approximately 90

23

connections. Assuming the adjustment of the temperature takes roughly 30 seconds, we wanted the

battery to last for at least 90 minutes. The battery that was chosen has three indicator lights that

show the approximate life left (all 3 lights on correspond to between 50 and 100% battery life). The

procedure for the test was as follows:

1. Turn on the MCU

2. Turn on the RCU

3. Change the set temperature

4. Wait for the change to be pushed on the database from the MCU

5. Turn the RCU off

6. Repeat 2-6 until 90 minutes or battery is at 50% (only 2 lights showing)

During this test, we found that the average time to change the temperature from turn on to updated

server was 42 seconds. We had 149 power cycles in just over 105 minutes. All three indicator lights

were still on at the end of this test. Therefore, we can conclude that the battery will last for one

semester or more when used as designed.

4.2.2 Error notifications

Our client wanted errors reported as soon as possible. Since we elected to use email, we were

concerned that there was a potential for the reports to be queued and sent later than intended.

Specifically, the email needed to reach our client within 30 minutes of being reported. The web server

runs the script to check for errors every 10 minutes. In our setup, we simulated errors by injecting

them into the database. We evaluated the latency between the time the error was reported and the

time the email showed up in our mailbox. The greatest latency we saw was 13 minutes. If the error

reporting check happens 10 minutes after the error, and the latency is the greatest that it can be, at

13 minutes, then we are confident that the response time will be within the 30-minute window

reliably.

5. Related Products
Our group went online to find other products on the market that are similar to our steam valve

retrofit. The closest two products we could find were a Danfoss temperature sensor and a Belimo

valve retrofit product. However, neither of these products offered a web interface for monitoring and

controlling room temperature. There are several commercially available “Smart home” thermostats

that can be controlled remotely, however none of them provide the capability to integrate with a

custom valve retrofit.

6. Final status
6.1 MCU
We were not able to complete temperature control testing. This would have entailed setting the

temperature in the room and evaluating the motors response and ability to hold the temperature

within the margin specified by our client. The software, circuitry, and packaging is considered

complete up to this point, but we are confident changes would likely need to be made to the motor

24

controller software based on the testing we were not able to complete. The temperature sensor

would also need to be moved outside of the packaging to give more reliable and consistent data.

6.2 RCU
We completed the circuitry and software to a workable, proof-of-concept level. However, we were

not able to create packaging for this device, nor were we able to secure the connection to the MCU.

The software would need to be updated to support encryption with the MCU.

6.3 WCU
The site design is complete and functional and the emailing capability is also complete. We were not

able to provide authorization of users though, which would not be ideal for deployment. To get

authorization via LDAP, the webcode would need to be rebuilt with Spring Security enabled and

configured to use ISU’s LDAP. With this turned on, the web server would need to be configured to use

HTTPS. This encrypt the passwords used to connect via LDAP.

6.4 Integration Testing
Since the MCU was not tested to control temperature, final integration testing would need to be

performed on the entire system before deployment. While we were able to independently verify the

behavior of all other components, long-term testing of the entire system is necessary.

25

Test Measures Procedure

Valve retrofit physically fits

on & can control selection of

valves

Best case (some wall with no

interference) and worst cases

(corner, tight fit, etc)

Place the MCU on the selected

valves and see if it fits and

works

Positions valve to optimal

location based on

temperature

Temperature variation between 2

degrees of set point

48 hour test, record changes

and set vs actual

Error reporting triggers

correctly, accurately, and

timely

Email sent within 30 min of error

found; error doesn't persist

Simulate or create an error and

measure the response of the

system

Usability RCU and WCU not 'difficult' to

figure out

Ask advisor and a member of

faculty to use them and report

their reaction

RCU consumes battery life as

expected in testing

 Calculate expected battery

consumption and compare to

actual after tests

WCU correctly secured Only accessible to admins and

professors, HTTPS enabled,

connection to database through SSL

Verify HTTPS on connection,

check access with selection of

admin, faculty, and students,

and ensure database

connection through log files

MCU chooses correct

temperature from the

database

Last input temperature is the one

chosen

Add some temps, see that the

MCU uses them as set

Figure 18. Proposed integration test cases

6. Appendix I - Operations Manual
6.1 Setup
6.1.1 MCU

1. Insert the sd card into a Linux machine (using adapter if necessary). Find the sd card by

running

sudo fdisk -l

before and after inserting the disk. Once you have the path to the disk, for example /dev/sda1,

run the command to image the disk (the path to the image on the Linux machine is shown

below as /home/user/Documents/steam_valve.img), changing the image and device path as

necessary:

sudo dd bs=1M if=/home/user/Documents/steam_valve.img of=/dev/sda1

After the command is finished imaging the sd card, insert the card into the Pi, hook up an

HDMI cord, power cord, keyboard, and mouse. Login using the following credentials:

26

User: pi

Password: buttersidedown

2. Run the commands to setup the network:

ifconfig wlan0

Find the MAC Address after ether

Ask ETG for a static IP for that MAC address. Once the IP is assigned and registered for the

network, reboot the Pi.

3. Login again and run the command:

 startx

Open a terminal using the black square icon in the upper left hand corner. Run the command

for the startup script:

 ./startup.sh

 Following the prompts to setup the scripts.

 Shutdown the Pi using:

 sudo halt

4. Remove the valve handle. Mount the motor on the pipe, aligning the motor shaft with the

valve shaft. Once aligned, tighten the bolts attaching the motor to the pipe to maintain

alignment. After adjusting the motor, tighten the set screws on the motor shaft and the valve

shaft. The wiring diagram is shown below.

Figure 19. MCU packaging wiring diagram

After hooking up the wires as shown above, mount the control box to the wall and connect to

power.

6.1.2 RCU

1. Change the ssid in line 10 of Wifi_Comm_Working.ino script to represent the name of the WiFi

network you want to connect to.

const char* ssid = "Name_of_Wifi_Network";

2. Change the host value to represent the static IP address of the MCU received from the ETG.

This is done on line 15 of Wifi_Comm_Working.ino script.

const char* host = "Static_IP_of_MCU";

3. Get the MAC address of the Feather by uncommenting line 32 in the Wifi_Comm_Working.ino

script. Ask ETG to give a static IP address for that MAC address.

Serial.println(WiFi.macAddress());

27

4. Upload the script to the Feather board using the Arduino IDE.

6.1.3 WCU

 No setup required.

6.2 Operation
6.2.1 MCU

No user operation necessary for the MCU.

6.2.2 RCU

1. Flip the switch to turn on the thermostat. Wait for the display to show the current and set

temperatures. If an error code appears on the screen contact ETG.

2. Press the buttons to change the temperature.

3. Wait for “SENT” to be displayed on the LED display.

4. Flip the switch to turn off the thermostat.

6.2.3 WCU

1. Connect to the internet through the ISU network.

2. Navigate to thermostat.ece.iastate.edu

Adjusting individual valve

1. Select the room from the floor plan image or from the floor option drop down.

2. Adjust slider value to desired temperature.

3. Press “Update Temperature.”

 Adjusting all valves

1. Select “Mass Control” from the “Menu” dropdown.

2. Adjust slider value to desired temperature.

3. Press “Update Temperatures.”

 Resolving Errors

1. Select “Error Control” from the “Menu” dropdown.

2. If any errors exist, they will be listed along with a checkbox.

3. To resolve an error for a specific block, check the corresponding box for that

block.

4. Press “Resolve Errors.”

28

7. Appendix II - Alternative and Past Iterations of Design

7.1 Prior group
This project is a continuation from another effort several years ago. Since the last project was from

several years ago and had to meet different requirements, we decided to select parts of the project to

adopt into ours, but did not elect to continue where they had left off. From the documentation left

behind, that group had attempted to create their own controller board for the motor, that involved

making a custom PCB for the microprocessor, ethernet and Xigbee network connections, LCD display,

thermometer circuit, and power regulation. That team was not able to finish their PCB design, nor

was there valve mount feasible for the operation of the motor. We were took elements from their

design, as well as several physical devices, and used them in our approach.

7.2 RCU
One of the components that has undergone the most changes from our initial ideas is the RCU. We

initially planned to used a Raspberry Pi in the RCU but had way too many unnecessary features that

consumed way to much power. The second iteration of the RCU used a microcontroller that

communicated via Bluetooth Low Energy (BLE). The assumptions made about the protocol turned

out to be incorrect, and we determined that it would not be a feasible option for the type of

functionality we needed. Since the Pi was critical to the MCU, and the MCU is critical to the project,

we decided to change out the microcontroller to one that could communicate via WiFi. This

microcontroller is used in the final product.

The microcontroller we picked out is the Adafruit Feather HUZZAH because it supported a featured

called deep sleep. While the board is in deep sleep, it shut down the majority of its features. This

meant that it would consume a very small amount of power which is what we wanted because it was

on the battery that needed to last for a full semester. Our research online and initial tests measured

the current draw in this state between 4 uA to 10 uA. With a 5000mAh battery, this was going to

work fine. However, upon further testing we found this was not going to work. The way the board

wakes up out of deep sleep is sending a signal from one of its I/O pins to the reset pin. We tried to

use the buttons that control the temperature to also complete the circuit between the reset pin and

the I/O pin using an OR gate so both buttons would work. The board would then have to be sending

the turn on signal continuously which means the board is not actual in deep sleep. The current draw

in this state was somewhere between 20mA to 30mA. This is still less then the current draw with

the board is completely on but would still drain the battery in a matter of days which was

unacceptable.

We then moved to trying to use a MOSFET as a switch between the battery and the Feather Board.

The buttons were still wired up to the OR gate along with a signal from one of the I/O pins on the

Feather Board and the output was connected to the gate of the MOSFET. This was not working. We

discovered that the voltage output of the OR gate was not high enough to turn on the MOSFET we

were using. By this point, we needed a solution we know was going to work as we still had a lot of

work to do on the project in other areas. We scheduled a meeting with our advisor to discuss this

29

issue we were having and proposed a dedicated switch to power the Feather Board. He approved

the idea and we continued on with the next stages of the project.

7.3 Motor Mount
Another part of our project that went through several iterations before settling on a design is our

motor to steam valve mount. Several different ideas where tossed around and 3D modeled during

the early stages of the project. At first, we thought up a tower that clamped to the pipe similar to the

clamps used in wood working to hold together two boards while glue is drying. We also considered

using a PVC pipe to mount the motor as it would be cheap to buy and easy to cut. That was also

scrapped. The second to last design was a metal box that would clamp to the valve and have a hole in

the top that the motor would mounted in.

Figure 20. Box design for motor mount

We presented this to our client for manufacturing and determined this design is overkill for the motor

we are using. He suggested that we only need one of the sides of the box to support our motor. That

is how we come to our final design that was manufactured and shown below.

30

Figure 21. Final motor mount design

8. Appendix III - Lessons Learned

8.1 Security
We initially didn’t plan on using any sort of extra security for the various database access we needed,

but it was pointed out to us that it would be easily interceptable without using an SSL connection.

ETG was able to generate certificates for this connection that we could use to connect from Python

(MCU) and Java (WCU).

Access to the website was planned to be limited to only the staff in Coover Hall, ETG, and FPM. To do

this, we started by trying to utilize Shibboleth, one of ISUs existing authentication systems. We later

found out that we would be unable to use it for more than one semester, which is not ideal as a long-

term solution. We changed our implementation to use LDAP (Lightweight Directory Access Protocol)

as there existed some documentation within the Spring Framework on how to do so. This switch in

authentication systems came along later than we had anticipated in the implementation process, and

we were unable to dedicate time to get it to work.

We also determined that it would be advantageous to encrypt the connection between the RCU and

MCU. We decided that the best approach would be to use AES-128 on each side to encrypt the data.

After struggling to implement several open-source libraries, we also came to the realization that the

encryption would be useless if we didn’t also generate session keys. We looked into other open

source libraries that provided the Diffie-Hellman Key Exchange protocol, but again, struggled to

implement a solution that could be reliable. The common theme seemed to be that the libraries that

31

supported the Arduino side implemented parts of the protocol in unexpected ways that proved to be

difficult to interpret on the Python side from the chosen libraries. Again, this security measure was

chosen late in the implementation phase, and the time spent trying to implement these solutions

ended up blocking further necessary development.

We learned that it is important to consider the security of the software early in the design process,

and to make finding the appropriate libraries and technologies to support it more of a priority.

Further, even the smallest embedded parts of a project require security measures. If the item is

connected to the network, we need to consider how that connection or the data can become

compromised.

8.2 Temperature Sensor Placement
In our PCB design, we did not expect the processor to generate enough heat to affect the temperature

sensor, but due to the placement of the temperature sensor in the middle of the Pi hat, as the

processor warms up, the temperature sensor reports distorted data. We also realize that inside the

control box, the airflow will be limited and therefore the temperature reading will be impacted to a

greater degree. In future designs, we recommend placing the temperature sensor on the outside of

the box.

